Dizocilpine Maleate [(+)-MK 801 maleate]

别名: Dizocilpine;MK801; MK 801; MK-801;DIZOCILPINE MALEATE; (+)-MK-801 hydrogen maleate; Dizocilpine maleate [USAN]; 6LR8C1B66Q; DTXSID2045785; DIZOCILPINE MALEATE; 77086-22-7; (+)-MK 801 Maleate; (+)-MK-801 hydrogen maleate; Dizocilpine hydrogen maleate; Dizocilpine maleate [USAN]; UNII-6LR8C1B66Q; 6LR8C1B66Q; (+)-MK 801 hydrogen maleate; MK 801 Maleate (-)-MK 801马来酸盐;(+)-MK 801 顺丁烯二酸盐;(+)-MK801顺丁烯二酸盐; (5R,10S)-(+)-5-甲基-10,11-二氢-5H-二苯并-[a,d]-环庚烯-5,10-亚胺氢化马来酸盐;MK 801马来酸盐;MK-801 顺丁烯二酸盐;(5S,10R)-(-)-5-甲基-10,11-二氢-5H-二苯并[A,D]环庚烷-5,10-亚胺二羧酸酸;马来酸地佐环平
目录号: V1083 纯度: ≥98%
Dizocilpine Maleate [以前的 (+)-MK-801)] 是 (+)dizocilpine 的马来酸盐,是 NMDA (N-甲基-D-天冬氨酸) 受体的非竞争性拮抗剂,在大鼠脑中的 Kd 为 37.2 nM膜。
Dizocilpine Maleate [(+)-MK 801 maleate] CAS号: 77086-22-7
产品类别: GluR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Dizocilpine Maleate [(+)-MK 801 maleate]:

  • 地佐环平/地卓西平马来酸盐
  • (Rac)-Dizocilpine ((Rac)-MK-801)
  • 地卓西平
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Dizocilpine Maleate [以前称为 (+)-MK-801)] 是 (+)dizocilpine 的马来酸盐,是 NMDA(N-甲基-D-天冬氨酸)受体的非竞争性拮抗剂,在体内的 Kd 为 37.2 nM大鼠脑膜。 (+)-MK-801 是一种有效的抗惊厥药,可能具有解离麻醉特性,但由于在测试大鼠中发现了脑损伤(称为奥尔尼损伤),因此在临床上并未用于此目的。
生物活性&实验参考方法
靶点
NMDA Receptor
体外研究 (In Vitro)
在大鼠大脑皮质膜中,[3H]dizocilpinemaleate 与 NMDA 受体结合的 Kd 为 37.2±2.7 nM[1]。当使用马来酸地佐西平时,N-Me-D-Asp 诱导的电流阻断是渐进且持久的[3]。 NMDA 诱导的电流逐渐被马来酸地佐西平抑制。即使在 NMDA 存在的情况下长时间使用地佐西平 (MK-801),Mg2+ (10 mM) 也会抑制地佐西平阻断 N-Me-D-Asp 诱导的电流。在outside-out贴片中,地佐环平抑制NMDA激活的单通道活性[3]。 Dizocilpinemaleate(小于 500 μM)可抑制 LPS 诱导的小胶质细胞激活,同时 BV-2 细胞中 Cox-2 蛋白表达升高。在 BV-2 细胞中,多考西平(MK-801;<500 μM)可减少小胶质细胞 TNF-α 的产生,EC50 为 400 μM[4]。
体内研究 (In Vivo)
在动物模型中,马来酸地佐环平可用于创建精神分裂症模型。最近的研究表明,与药物有关的记忆在暴露于环境线索后会被重新激活,并可能经历重新巩固,这一过程可以增强记忆。相反,某些药物可能会破坏再巩固,从而削弱与药物相关的记忆。几项研究已经证明,使用药物诱导的条件性位置偏好(CPP)任务会破坏记忆的再巩固,但没有研究探讨在可卡因预充注射后,可卡因相关的记忆是否会在可卡因自我给药动物中受到类似的破坏,这会有力地恢复药物寻求行为。在这里,我们使用可卡因诱导的CPP和可卡因自我给药来研究在重新激活之前给予N-甲基-D-天冬氨酸受体拮抗剂(+)-5-甲基-10,11-二氢-5H-二苯并[a,D]环庚烯-5,10-马来酸亚胺(MK-801)是否会抑制随后可卡因引发的恢复(破坏再巩固)。在CPP背景下可卡因相关记忆重新激活之前,在大鼠体内全身注射MK-801(腹腔注射0.05或0.20mg/kg)会减弱随后可卡因引发的恢复,而在CPP环境中未接受重新激活的大鼠则不会出现中断。然而,在接受过自我给药可卡因训练的大鼠中,在两种不同类型的再激活过程之前全身给药MK-801对随后可卡因引发的杠杆按压行为的恢复没有影响。因此,MK-801的系统给药破坏了可卡因相关记忆对CPP的再巩固,但对自我给药没有影响。这些发现表明,可卡因CPP和自我给药不会使用类似的神经化学过程来破坏再巩固,或者自我给药大鼠的可卡因相关记忆不会经历再巩固,这是通过可卡因恢复条件下的杠杆按压行为来评估的[5]。
研究了单独吗啡(MOR:10和20mg/kg,皮下注射)、单独MK-801(地佐西平:0.03、0.1、0.3和1mg/kg,腹腔注射)以及MOR与MK-801的组合对小鼠行走的影响。MK-801在0.3和1mg/kg时,但在0.03和0.1mg/kg时没有显著增加小鼠的行走能力。尽管反复给药MK-801(0.3和1mg/kg)的小鼠在个体剂量的步行增加效应中分别表现出增强和减弱,但它们对MOR(10mg/kg)的挑战表现出明显高于生理盐水处理的小鼠的敏感性。MOR(10和20mg/kg)的重复给药诱导了步行增加效果的逐渐增强。反复给予MOR(10mg/kg)的小鼠对MK-801(0.03-0.3mg/kg)的敏感性显著增加。MOR与MK-801的联合用药增强了步行增加的效果,重复联合用药诱导了效果的逐渐增强,但MOR(10或20 mg/kg)与MK-802(1 mg/kg)的联合用药除外。然而,除了MOR(20mg/kg)与MK-801(1mg/kg)联合使用的情况外,任何剂量的MK-801都不会改变MOR致敏的诱导,MK-801具有高毒性(即引发死亡或垂死状态)。另一方面,同时用SCH 23390(0.05 mg/kg,皮下注射)或尼莫地平(0.05 mg/kg)治疗,或用利血平(1 mg/kg,皮下移植)预处理4小时,用α-甲基对酪氨酸(200 mg/kg,腹腔注射)预处理6小时,部分降低了MOR(10 mg/kg)和MK-801(0.3 mg/kg)的步行增加作用。纳洛酮(1mg/kg,皮下注射)同时治疗选择性地降低了MOR的效果。然而,同时用阿扑吗啡(0.1mg/kg,皮下注射)治疗并没有改变任何一种药物的效果。这些结果表明,MOR和MK-801的步行增加作用的特征彼此相似,MK-801重复治疗可诱导对MOR的交叉致敏,反之亦然[6]。
酶活实验
化合物MK-801[(+)-5-甲基-10,11-二氢-5H-二苯并[a,d]环庚烯-5,10-亚胺马来酸酯]是一种强效抗惊厥药,口服后具有活性,其作用机制尚不清楚。我们在大鼠脑膜中检测到[3H]MK-801的高亲和力(Kd=37.2+/-2.7 nM)结合位点。这些位点是热不稳定的、立体选择性的和区域特异性的,海马体的位点密度最高,其次是大脑皮层、纹状体和脑桥髓质。小脑中未检测到结合。MK-801结合位点表现出一种新的药理学特征,因为这些位点上没有一种主要的神经递质候选物是活性的。唯一能够竞争[3H]MK-801结合位点的化合物是已知能够阻断N-甲基-D-天冬氨酸(N-Me-D-Asp)受体亚型介导的兴奋性氨基酸反应的物质。这些药物包括游离麻醉剂苯环利定和氯胺酮以及西格玛型阿片类药物N-烯丙基甲氧基丙胺(SKF 10047)。使用大鼠皮质切片制备的体外神经生理学研究表明,MK-801对N-Me-D-Asp的去极化反应具有强效、选择性和非竞争性拮抗作用,但对红藻氨酸或奎司琼酸盐没有。苯环利定、氯胺酮、SKF 10047和MK-801作为N-Me-D-Asp拮抗剂的效力与其作为[3H]MK-801结合抑制剂的效力密切相关(r=0.99)。这表明MK-801结合位点与N-Me-D-Asp受体有关,并解释了MK-801作为抗惊厥药的作用机制[1]。
细胞实验
神经元从2至6天大的Long-Evans大鼠幼崽的视觉皮层中分离出来,并在培养基中生长5-43天,如所述(21)。在全细胞和外部膜片钳配置中测量了由氨基酸激发激活的电流。移液管中含有120甲基磺酸铯、5 CsCI、10 Cs2EGTA、5 Mg(OH)2、5 MgATP、1 Na2GTP和10 Hepes的内溶液(单位为mM)(用CsOH将pH值调节至7.4)。外部溶液(单位为mM)为160 NaCl、2 CaC12和10 Hepes(pH 7.40)。在全细胞实验中,将300 nM河豚毒素和10 kLM荷包牡丹碱甲基碘添加到外部溶液中以抑制自发活动。MK-801是Paul Anderson的礼物,是从2-50mM的乙醇储备溶液中加入的,储存在-20℃下。乙醇的最终浓度<0.1%。将细胞或贴片浸泡在对照或含激动剂的外部溶液中,该外部溶液由重力供给的7-10个微毛细管线性阵列中的一个流出。通过相对于细胞(整个细胞)移动试管阵列或相对于试管(贴片)移动移液管,可以快速更换溶液。所有实验均在20-250C下进行[3]。
动物实验
Systemic injection of Dizocilpine/MK-801 (0.05 or 0.20 mg/kg administered intraperitoneally) in rats just prior to reactivation of the cocaine-associated memory in the CPP context attenuated subsequent cocaine-primed reinstatement, while no disruption occurred in rats that did not receive reactivation in the CPP context. However, in rats trained to self-administer cocaine, systemic administration of MK-801 just prior to either of two different types of reactivation sessions had no effect on subsequent cocaine-primed reinstatement of lever-pressing behavior. Thus, systemic administration of MK-801 disrupted the reconsolidation of a cocaine-associated memory for CPP but not for self-administration. These findings suggest that cocaine-CPP and self-administration do not use similar neurochemical processes to disrupt reconsolidation or that cocaine-associated memories in self-administering rats do not undergo reconsolidation, as assessed by lever-pressing behavior under cocaine reinstatement conditions.[5]
Subjects [5]
Male Sprague-Dawley and Long-Evans Hooded rats weighing 280–350 g at the start of the experiment were housed in a temperature- and humidity-controlled colony room with a 12-h light/dark cycle (lights on at 6:00 a.m.). Sprague-Dawley rats were used for all CPP studies, and our initial self-administration studies used Long-Evans rats because of their higher general activity levels and thus higher initial lever pressing during acquisition of the self-administration task. However, to ensure that there were no strain differences in the effects of Dizocilpine/MK-801 on self-administration behavior, we also used Sprague-Dawley rats to test the effects of the highest dose of MK-801 compared with Saline vehicle in this strain. No significant differences were found for the effects of MK-801, so the data from both strains were pooled. Animals undergoing self-administration were housed in a 12-h reverse light/dark cycle (lights on at 6:00 p.m.). Experiments were conducted according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and experimental protocols were approved by the University Animal Care and Use Committee. Animals were housed two per cage for the CPP studies and individually for the self-administration studies. Food and water were provided ad libitum except for when animals were engaged in experiments.
Drug administration [5]
Dizocilpine(+)-MK-801 hydrogen maleate was dissolved in sterile saline for i.p. injection (1 mL/kg). The doses chosen were 0.05 and 0.20 mg/kg, based on previous work by Przybyslawski and Sara (1997).
Surgery [5]
Self-administration surgery was conducted according to a modification of McFarland and Kalivas (2001). Rats were anesthetized with zyket (ketamine 87 mg/kg + xylazine 13 mg/kg) given intramuscularly prior to implanting a chronic indwelling i.v. catheter. The catheter was surgically implanted into the right jugular vein, and the distal end was led subcutaneously to the back between the scapulas. Catheters were constructed from Silastic tubing (9 cm; inner diameter 0.025 in, outer diameter 0.047 in) connected to a back-mount cannula pedestal, a bent 22-gauge metal cannula encased within a plastic screw connector attached to a polyester mesh (Plastics One). A small ball of silicone sealant was placed ∼2.8 cm from the end of the catheter. The right jugular vein was isolated, the most anterior portion of the vein was tied shut, and a small incision was made. The distal end of the catheter was inserted into the vein until the silicone ball was flush with the vein. The vein was secured by tying suture thread on both sides of the silicone ball; additionally, the thread on both sides was tied together. Immediately after surgery, the catheter was injected with 0.1 mL of locking solution: heparin (500 U/mL), gentamicin (5 mg/mL), and glycerol (60%) in sterile saline. Incisions were sutured, and the animal was given 5–7 d to recover. After surgery, the catheter was flushed daily with 0.1 mL of heparin (10 U/mL) and gentamicin antibiotic (5 mg/mL) in sterile saline to help protect against infection and catheter occlusion.
Behavioral procedures [5]
CPP [5]
All CPP studies were conducted during the same time of day. The proposed studies employed a three-compartment CPP apparatus as previously described (Brown et al. 2007). Briefly, the procedure consisted of a preconditioning preference test, training for 8 d (4 saline pairings alternating with 4 cocaine pairings), testing for CPP acquisition followed by extinction sessions, and cocaine-primed reinstatement with a 10 mg/kg, i.p. dose of cocaine (Brown et al. 2007). Except for the training days, rats had access to all three compartments of the CPP apparatus.

In Experiment 1, we tested whether Dizocilpine/MK-801 would impair reconsolidation of the memory for the cocaine-associated context during reinstatement testing. Animals underwent preconditioning, conditioning, testing, and extinction as described above, and on Reactivation Day 1, rats received saline or MK-801 (0.05 mg/kg or 0.20 mg/kg, i.p.) 30 min prior to a cocaine injection (10 mg/kg, i.p.) and placed immediately into the central compartment of the CPP box (Reactivation Day 1). Rats were allowed to explore all three compartments. The next day, the procedure from Reactivation Day 1 was repeated (Reactivation Day 2). This procedure was given for 2 d because our previous studies using a different pharmacological agent (Brown et al. 2007) indicated that one day of memory reactivation was not sufficient to disrupt subsequent cocaine-primed reinstatement. The following day, animals were tested for cocaine-primed reinstatement without any prior injection of either saline or MK-801 before being placed into the CPP box (Reinstatement Day). Rats were allowed to explore all three compartments.

Experiment 2 was identical to Experiment 1 with the exception of the cage location where Dizocilpine/MK-801 and cocaine injection took place on Reactivation Days 1 and 2. In Experiment 2, animals were given saline or MK-801 followed by cocaine 30 min later in the home cage instead of in the CPP apparatus for the two days of “reactivation.” This was done to determine whether reactivation of the memory for the cocaine-associated context by cocaine in the CPP context was necessary for the ability of MK-801 to disrupt reconsolidation. Animals underwent preconditioning, conditioning, testing, and extinction as described above but animals were injected with saline or MK-801 (0.20 mg/kg, i.p.) 30 min prior to a cocaine injection (10 mg/kg, i.p.) in the home cage. Animals remained in the home cages, and the next day, the procedure from the first day of reactivation was repeated. The following day, animals were tested for cocaine-primed reinstatement in their CPP box without any prior microinjection of saline or MK-801, exactly as described for the Reinstatement Day in Experiment 1 above.
Dissolved in saline; 0.1mg/kg; oral gavage
Male Sprague-Dawley rats
药代性质 (ADME/PK)
Dizocilpine (MK-801) is a non-competitive NMDA receptor antagonist with high binding affinity, requiring an open channel for receptor blockade. Key pharmacokinetic characteristics include:
1. Bioavailability & Absorption
o While specific bioavailability data for dizocilpine is not provided in the sources, its structural analog orphenadrine (an NMDA antagonist with similar properties) demonstrates blood-brain barrier penetration, suggesting dizocilpine may share this trait.

2. Metabolism & Elimination
o Studies on reeler mice indicate dizocilpine’s efficacy correlates with GABAergic modulation, implying potential hepatic metabolism involving neurotransmitter pathways.
o Comparative pharmacokinetic data from paliperidone derivatives suggest rapid metabolism may occur for certain CNS-targeting drugs, though dizocilpine’s exact metabolic profile remains unspecified.

3. Pharmacodynamic Interactions
o Dizocilpine’s NMDA receptor blockade is enhanced in models of synaptic plasticity dysfunction, suggesting context-dependent pharmacokinetic-pharmacodynamic relationships.
For precise quantification (e.g., Tmax, half-life), additional data beyond the current search results would be required.
毒性/毒理 (Toxicokinetics/TK)
mouse LD50 intravenous 30 mg/kg United States Patent Document., #5273989
参考文献

[1]. The anticonvulsant MK-801 is a potent N-Me-D-Asp antagonist. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7104-8.

[2]. Convergent Strategy to Dizocilpine MK-801 and Derivatives. J Org Chem. 2018 Apr 6;83(7):4264-4269.

[3]. Block of N-Me-D-Asp-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307-11.

[4]. MK-801 and dextromethorphan block microglial activation and protect against neurotoxicity. Brain Res. 2005 Jul 19;1050(1-2):190-8.

[5]. The NMDA antagonist MK-801 disrupts reconsolidation of a cocaine-associated memory for conditioned place preference but not for self-administration in rats. Learn Mem. 2008 Dec 2;15(12):857-65.

[6]. Modification by MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist sensitization: evaluation by ambulation in mice. Nihon Shinkei Seishin Yakurigaku Zasshi. 1996 Feb;16(1):11-8.

[7]. Decrease of growth and differentiation factor 10 contributes to neuropathic pain through N-Me-D-Asp receptor activation. Neuroreport. 2017 May 24;28(8):444-450.

其他信息
Dizocilpine maleate is a maleate salt obtained by reaction of dizocilpine with one equivalent of maleic acid. It has a role as an anaesthetic, an anticonvulsant, a neuroprotective agent, a nicotinic antagonist and a NMDA receptor antagonist. It is a maleate salt and a tetracyclic antidepressant. It contains a dizocilpine(1+).
A potent noncompetitive antagonist of the NMDA receptor (RECEPTORS, N-METHYL-D-ASPARTATE) used mainly as a research tool. The drug has been considered for the wide variety of neurodegenerative conditions or disorders in which NMDA receptors may play an important role. Its use has been primarily limited to animal and tissue experiments because of its psychotropic effects.
The compound MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate)] is a potent anticonvulsant that is active after oral administration and whose mechanism of action is unknown. We have detected high-affinity (Kd = 37.2 +/- 2.7 nM) binding sites for [3H]MK-801 in rat brain membranes. These sites are heat-labile, stereoselective, and regionally specific, with the hippocampus showing the highest density of sites, followed by cerebral cortex, corpus striatum, and medulla-pons. There was no detectable binding in the cerebellum. MK-801 binding sites exhibited a novel pharmacological profile, since none of the major neurotransmitter candidates were active at these sites. The only compounds that were able to compete for [3H]MK-801 binding sites were substances known to block the responses of excitatory amino acids mediated by the N-methyl-D-aspartate (N-Me-D-Asp) receptor subtype. These comprised the dissociative anesthetics phencyclidine and ketamine and the sigma-type opioid N-allylnormetazocine (SKF 10,047). Neurophysiological studies in vitro, using a rat cortical-slice preparation, demonstrated a potent, selective, and noncompetitive antagonistic action of MK-801 on depolarizing responses to N-Me-D-Asp but not to kainate or quisqualate. The potencies of phencyclidine, ketamine, SKF 10,047, and the enantiomers of MK-801 as N-Me-D-Asp antagonists correlated closely (r = 0.99) with their potencies as inhibitors of [3H]MK-801 binding. This suggests that the MK-801 binding sites are associated with N-Me-D-Asp receptors and provides an explanation for the mechanism of action of MK-801 as an anticonvulsant.[1]
Whole-cell and single-channel recording techniques were used to study the action of the anticonvulsant drug MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]- cyclohepten-5,10-imine maleate) on responses to excitatory amino acids in rat neocortical neurons in cell culture. MK-801 caused a progressive, long-lasting blockade of current induced by N-methyl-D-aspartate (N-Me-D-Asp). However, during the time that N-Me-D-Asp responses were inhibited, there was no effect on responses to quisqualate or kainate, suggesting that N-Me-D-Asp receptors and kainate/quisqualate receptors open separate populations of ion channels. Binding and unbinding of MK-801 seems to be possible only if the N-Me-D-Asp-operated channel is in the transmitter-activated state: MK-801 was effective only when applied simultaneously with N-Me-D-Asp, and recovery from MK-801 blockade was speeded by continuous exposure to N-Me-D-Asp [time constant (tau) approximately equal to 90 min at -70 to -80 mV]. Recovery from block during continuous application of N-Me-D-Asp was strongly voltage dependent, being faster at positive potentials (tau approximately equal to 2 min at +30 mV). Mg2+, which is thought to block the N-Me-D-Asp-activated ion channel, inhibited blockade by MK-801 at negative membrane potentials. In single-channel recordings from outside-out patches. MK-801 greatly reduced the channel activity elicited by application of N-Me-D-Asp but did not significantly alter the predominant unitary conductance. Consistent with an open-channel blocking mechanism, the mean channel open time was reduced by MK-801 in a dose-dependent manner.[3]
In summary, our work shows for the first time that the same reactivation parameters and pharmacological agent (MK-801) that disrupted the reconsolidation of a cocaine-associated memory for a CPP task did not disrupt reconsolidation of the memory for a self-administration task. Further, reactivation parameters that mimicked the self-administration procedure itself, and therefore should have promoted robust retrieval of the cocaine-associated memory, also failed to render this memory labile for disruption by MK-801. The possibility of diminishing persistent and unwanted memories by disrupting the reconsolidation process opens exciting new frontiers for developing treatments for pathological disorders, including drug abuse. However, the complexity of memory storage and subsequent memory retrieval that ultimately may lead to memory recoding has only begun to be elucidated and therefore requires further systematic investigation with regard to the timing and the specific parameters used for reactivation.[5]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C20H19NO4
分子量
337.3692
精确质量
337.131
元素分析
C, 71.20; H, 5.68; N, 4.15; O, 18.97
CAS号
77086-22-7
相关CAS号
(-)-Dizocilpine maleate;121917-57-5;Dizocilpine;77086-21-6
PubChem CID
6420042
外观&性状
White to off-white solid powder
沸点
541ºC at 760 mmHg
熔点
183-185ºC
闪点
281ºC
LogP
3.19
tPSA
86.63
氢键供体(HBD)数目
3
氢键受体(HBA)数目
5
可旋转键数目(RBC)
2
重原子数目
25
分子复杂度/Complexity
432
定义原子立体中心数目
2
SMILES
C[C@@]12C3=CC=CC=C3C[C@@H](N1)C4=CC=CC=C24.C(=C\C(=O)O)\C(=O)O
InChi Key
QLTXKCWMEZIHBJ-BTJKTKAUSA-N
InChi Code
InChI=1S/C16H15N.C4H4O4/c1-16-13-8-4-2-6-11(13)10-15(17-16)12-7-3-5-9-14(12)16;5-3(6)1-2-4(7)8/h2-9,15,17H,10H2,1H3;1-2H,(H,5,6)(H,7,8)/b;2-1-
化学名
5-methyl-10,11-dihydro-5H-5,10-epiminodibenzo[a,d][7]annulene maleate
别名
Dizocilpine;MK801; MK 801; MK-801;DIZOCILPINE MALEATE; (+)-MK-801 hydrogen maleate; Dizocilpine maleate [USAN]; 6LR8C1B66Q; DTXSID2045785; DIZOCILPINE MALEATE; 77086-22-7; (+)-MK 801 Maleate; (+)-MK-801 hydrogen maleate; Dizocilpine hydrogen maleate; Dizocilpine maleate [USAN]; UNII-6LR8C1B66Q; 6LR8C1B66Q; (+)-MK 801 hydrogen maleate; MK 801 Maleate
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 68 mg/mL (201.6 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (7.41 mM) (饱和度未知) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL 澄清 EtOH 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (7.41 mM) (饱和度未知) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清乙醇储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.19 mg/mL (6.49 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 21.9 mg/mL澄清的DMSO储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。


配方 4 中的溶解度: ≥ 2.08 mg/mL (6.17 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100μL 20.8mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 5 中的溶解度: ≥ 2.08 mg/mL (6.17 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。

配方 6 中的溶解度: 3.45 mg/mL (10.23 mM) in Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.9641 mL 14.8205 mL 29.6410 mL
5 mM 0.5928 mL 2.9641 mL 5.9282 mL
10 mM 0.2964 mL 1.4821 mL 2.9641 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • An external file that holds a picture, illustration, etc. Object name is nihms71896f4.jpg
    Differential MK-801 block and recovery of NMDA-eEPSCs and NMDA-mEPSCs.

  • An external file that holds a picture, illustration, etc. Object name is nihms71896f1.jpg
    MK-801 block of NMDA-mEPSCs in hippocampal cultures.


  • An external file that holds a picture, illustration, etc. Object name is nihms71896f9.jpg
    Asynchronous release detected in the absence of synaptotagmin 1 or in strontium is resistant to MK-801 application at rest.
相关产品
联系我们